Flower-17 no data augumentation AI DeepLearning python #Fine Grained #Classification

시작하려면 Flowers-17 데이터 세트에서 MiniVGGNet 아키텍처 (16 장)를 학습 할 때 데이터 증가를 사용하지 않는 기준을 설정해 보겠습니다. 새 파일을 열고 이름을 minivggnet_flowers17.py로 지정하면 작업을 시작할 수 있습니다. 2 ~ 14 행은 필수 Python 패키지를 가져옵니다. 이전에 본 대부분의 import는 다음과 같습니다. 1. 6행 : 여기에서 새로 정의 된 AspectAwarePreprocessor를 가져옵니다. 2. 7 행 : …

Animals 피처 추출 Augmentation 파이썬 python Fine Grained Classification Feature Extrator VGG16 CALTECH-101

VGG16을 사용하여 특징을 추출 할 첫 번째 데이터 세트는 “Animals”데이터 세트입니다. 이 데이터 세트는 개, 고양이, 판다의 세 가지 클래스로 구성된 3,000 개의 이미지로 구성됩니다. VGG16을 활용하여 이러한 이미지에서 특징을 추출하려면 다음 명령을 실행하면 됩니다. Titan X GPU를 사용하여 약 35 초 만에 3,000 개 이미지에서 특징을 추출 할 수있었습니다. 스크립트가 실행 된 후 animals …

Rank 1 rank accuracy test preds labels Augmentation python Fine grained Classification Accuracy precision rank1 rank5 flowers 17

rank-1 및 rank-5 정확도는 간단한 유틸리티 함수를 구축하여 계산할 수 있습니다. 모듈 내에서 rank.py라는 파일을 추가하여 이 기능을 utils 하위 모듈에 추가합니다. rank.py를 열고 rank5_accuracy 함수를 정의합니다. 4 행은 rank5_accuracy 함수를 정의합니다. 이 방법은 다음 두 가지 매개 변수를 받습니다. • preds : N × T 행렬, 행 수 N은 각 클래스 레이블 T와 관련된 …

Rank 정확도 이해#인공지능 #딥러닝 #기계학습 AI DeepLearning #MachineLearning Augmentation 파이썬 python Fine Grained Classification Accuracy Precision rank1 rank5 flower17 caltech101

고급 딥 러닝 주제 (예 : 전이 학습)에 대한 논의가 너무 깊어지기 전에 먼저 한 발 뒤로 물러나서 rank 1, rank -5 및 rank -N 정확도의 개념에 대해 논의하겠습니다. 특히 컴퓨터 비전과 이미지 분류 공간에서 딥 러닝 문헌을 읽을 때 rank 정확도라는 개념을 접하게 될 것입니다. 예를 들어 ImageNet 데이터 세트에서 평가 된 기계 학습 …