데이터 증강 what is data augmentation Goodfellow generalization 시각화

Goodfellow et al.에 따르면, 정규화는 “일반화 오류를 줄이기 위한 학습 알고리즘의 수정이 훈련 오류를 줄이려는 것이 아닙니다.”. 간단히 말해서 정규화는 훈련 오류를 약간 증가시키는 대신 테스트 오류를 ​​줄이려고 합니다. 이미 앞 8 장에서 다양한 형태의 정규화를 살펴 보았습니다. 그러나 이는 매개 변수화 된 정규화 형식이어서 손실 / 업데이트 함수를 업데이트해야합니다. 실제로 다음과 같은 다른 유형의 …