rank-1 및 rank-5 정확도는 간단한 유틸리티 함수를 구축하여 계산할 수 있습니다. 모듈 내에서 rank.py라는 파일을 추가하여 이 기능을 utils 하위 모듈에 추가합니다. rank.py를 열고 rank5_accuracy 함수를 정의합니다. 4 행은 rank5_accuracy 함수를 정의합니다. 이 방법은 다음 두 가지 매개 변수를 받습니다. • preds : N × T 행렬, 행 수 N은 각 클래스 레이블 T와 관련된 …
카테고리 글 보관함:pytnon
Rank 정확도 이해#인공지능 #딥러닝 #기계학습 AI DeepLearning #MachineLearning Augmentation 파이썬 python Fine Grained Classification Accuracy Precision rank1 rank5 flower17 caltech101
고급 딥 러닝 주제 (예 : 전이 학습)에 대한 논의가 너무 깊어지기 전에 먼저 한 발 뒤로 물러나서 rank 1, rank -5 및 rank -N 정확도의 개념에 대해 논의하겠습니다. 특히 컴퓨터 비전과 이미지 분류 공간에서 딥 러닝 문헌을 읽을 때 rank 정확도라는 개념을 접하게 될 것입니다. 예를 들어 ImageNet 데이터 세트에서 평가 된 기계 학습 …
fineTuning 파인튜닝 AI CONV 필터Augmentation python Keras Classification Fine Tuning Flowers17
이제 처음부터 끝까지 파인튜닝을 적용 할 때입니다. 새 파일을 열고 이름을 finetune_flowers17.py로 지정하고 다음 코드를 삽입합니다. 2 ~ 18 행은 Python 패키지를 가져와야 합니다. 이전 예제에서 본 적이있는 더 많은 패키지 (대부분 우리가 이미 잘 알고 있음). 5-7 행은 데이터 세트 로드와 함께 이미지 전처리기를 가져옵니다. 8 행은 VGG16 (12 행)의 헤드를 대체하기 위해 새로 …
더 보기 “fineTuning 파인튜닝 AI CONV 필터Augmentation python Keras Classification Fine Tuning Flowers17”
Indexs Layers 인공지능 딥러닝 MachineLearning fcheadnet Augmentation 파이썬 python Classification Fine Tuning Flowers17 VGG16
네트워크 수술을 수행하기 전에 주어진 딥러닝 모델에있는 모든 레이어의 레이어 이름과 인덱스를 알아야합니다. 사전 훈련 된 CNN에서 특정 레이어를 “고정” 및 “고정 해제” 해야 하므로 이 정보가 필요합니다. 레이어 이름과 인덱스를 미리 알지 못하면 우리는 계획이없는 통제 불능 외과 의사 처럼 “맹목적으로 절단” 할 것입니다. 대신 네트워크 아키텍처와 구현을 검토하는 데 몇 분을 투자하면 수술을 …
AI DeepLearning MachineLearning Augmentation 전이학습 파이썬 python Classification Fine Tuning Flowers17
우리는 사전 훈련 된 컨볼루션 신경망을 피처 추출기로 취급하는 방법을 배웠습니다. 이 피처 추출기를 사용하여 네트워크를 통해 이미지 데이터 세트를 전달하고 지정된 계층에서 활성화를 추출하고 값을 디스크에 저장했습니다. 그런 다음 SIFT, HOG, LBP와 같은 수작업으로 엔지니어링 된 기능을 사용하는 경우와 똑같이 CNN 피처 위에 표준 기계 학습 분류기(이 경우 로지스틱 회귀)를 훈련했습니다. 이 전이 학습이라고하는 …
앙상블 CNN Jensen Inequality 평가 deepLearnging 파이썬 python
CNN 앙상블을 구성하고 평가하려면 test_ensemble.py라는 별도의 파일을 만들고 다음 코드를 삽입합니다. 2-9 행은 필요한 Python 패키지를 가져 오는 반면 12-15 행은 명령 줄 인수를 구문 분석합니다. 여기에는 직렬화 된 네트워크 가중치가 디스크에 저장되는 경로 인 –models가있는 단일 스위치 만 필요합니다. 여기에서 CIFAR-10 데이터 세트를 로드하여 네트워크를 평가할 뿐 (훈련이 아닌) 테스트 세트 만 유지할 수 …
더 보기 “앙상블 CNN Jensen Inequality 평가 deepLearnging 파이썬 python”
파이썬 python Classification Ensemble 앙상블 Jensen Inequality 인공지능 딥러닝
CNN 앙상블을 구축하는 첫 번째 단계는 각 개별 CNN을 훈련하는 것입니다. 단일 CNN을 훈련하는 많은 예를 보았지만 여러 네트워크를 어떻게 훈련합니까? 일반적으로 두 가지 옵션이 있습니다. 1. 단일 네트워크를 여러 번 훈련하는 데 사용하는 스크립트를 실행하여 출력 직렬화 된 모델 가중치 경로를 각 실행에 대해 저장되도록 변경합니다. 2. for 루프를 사용하여 N 개의 네트워크를 …
더 보기 “파이썬 python Classification Ensemble 앙상블 Jensen Inequality 인공지능 딥러닝”
Image Net Challenge Inequality Inequality 앙상블
이 장에서는 앙상블 메서드의 개념, 여러 분류기를 가져와 하나의 큰 메타 분류기로 집계하는 프로세스를 살펴 봅니다. 여러 기계 학습 모델을 함께 평균화하면 무작위로 선택한 단일 모델을 사용하여 성능을 능가 (즉, 더 높은 정확도 달성) 할 수 있습니다. 사실, ImageNet Challenge에서 경쟁하는 거의 모든 최신 출판물은 Convolutional Neural Networks 앙상블에 대한 최상의 결과를보고합니다. 이 장에서는 Jensen의 …
DeepLearning MachineLearning Optimization SGD Stochastic Gradient Descent Adagrad Adadelta RMSprop Adam Nadam
이러한 모든 최적화 알고리즘 중에서 선택을 할 때 어떤 것을 선택해야합니까? 불행히도 그 대답은 결정적이지 않습니다. Schaul et al. 2014 년에 확률 적 최적화를위한 단위 테스트 논문에서는 이러한 최적화 방법 중 많은 것을 벤치마킹하려고 시도했으며 적응형 학습률 알고리즘이 호의적으로 수행되었지만 확실한 승자는 없음을 발견했습니다. 딥러닝 최적화 알고리즘 (그리고 이를 어떤 방법을 선택하는 것)은 여전히 …
파이썬 python 딥러닝 최적화 SDG Gradient Descent Optimazation
지금까지는 네트워크를 최적화하기 위해 SGD (Stochastic Gradient Descent) 만 연구하고 사용했지만 딥 러닝에 사용되는 다른 최적화 방법이 있습니다. 특히 이러한 고급 최적화 기술은 다음 중 하나를 추구합니다. 1. 합리적인 분류 정확도를 얻기 위해 시간 (즉, 에포크 수)을 줄입니다. 2. 학습률 이외의 더 넓은 범위의 하이퍼 파라미터에 대해 네트워크를 더 “잘 작동”하도록 만듭니다. 3. 이상적으로는 SGD로 …